Some new generating functions for weight multiplicities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weight Multiplicities For

We explicitly determine quasi-polynomials describing the weight multiplicities of the Lie algebra so5(C). This information entails immediate complete knowledge of the character of any simple representation as well as the asymptotic behavior of characters.

متن کامل

Some bilinear generating functions.

In the present paper, the author applies some of his earlier results which extend the well-known Hille-Hardy formula for the Laguerre polynomials to certain classes of generalized hypergeometric polynomials in order to derive various generalizations of a bilinear generating function for the Jacobi polynomials proved recently by Carlitz. The corresponding results for the polynomials of Legendre,...

متن کامل

Probability Generating Functions for Sattolo’s Algorithm

In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...

متن کامل

Short Generating Functions for some Semigroup Algebras

Let a1, a2, . . . , an be distinct, positive integers with (a1, a2, . . . , an) = 1, and let k be an arbitrary field. Let H(a1, . . . , an; z) denote the Hilbert series of the graded algebra k[ta1 , ta2 , . . . , tan ]. We show that, when n = 3, this rational function has a simple expression in terms of a1, a2, a3; in particular, the numerator has at most six terms. By way of contrast, it is kn...

متن کامل

A new formula for weight multiplicities and characters

Let V0, (, ) be the real Euclidean space spanned by the root system R0 of g and let V be the space of affine linear functions on V0. We shall identify V with Rδ ⊕ V0 via the pairing (rδ + x, y) = r + (x, y) for r ∈ R, x, y ∈ V0. The dual affine root system is R = {mδ + α | m ∈ Z, α ∈ R0} ⊆ V where α ∨ means 2α (α,α) as usual. Fix a positive subsystem R + 0 ⊆ R0 with base {α1, · · · , αn} and le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 1995

ISSN: 0019-3577

DOI: 10.1016/0019-3577(95)91239-r